
Micromega Corporation 1 Revised 2008-03-03

Converting uM-FPU V3.1 code

from ARMbasic V6 to ARMbasic V7

There are a number of changes required to adapt to the new SPIIN/SPIOUT and I2CIN/I2COUT functions provided 
in ARMbasic V7. The new FPU library code takes advantage of the parameter passing and function returns provided 
by V7 to provide more readable code. Another advantage of the new libraries is that the function calls are identical 
in both the SPI and I2C libraries. You can switch from an SPI to an I2C interface by simply changing the library 
that’s included.

The following points summarize some of the steps required to convert uM-FPU V3.1 code from an ARMbasic V6 
program to an ARMbasic V7 program. 

1) Include FPUspi.bas or FPUi2c.bas library file
The FPUspi.bas or FPUi2c.bas library file must be included at the start of the program.

For an SPI connection:
#include "FPUspi.bas"

For an I2C connection:
#include "FPUi2c.bas"

2) GOSUB is no longer required before a subroutine call

3) Update the Fpu_Reset call
Fpu_Reset is now defined as a function that returns the sync character read from the FPU. A sample reset 
sequence is shown below.

Original ARMbasic V6 Code
GOSUB Fpu_Reset ' reset the uM-FPU V3 chip
IF status <> SYNC_CHAR THEN ' check for synchronization

PRINT "uM-FPU not detected"
END

ELSE
GOSUB Print_Version ' display the uM-FPU version number
PRINT

ENDIF

Converted ARMbasic V7 Code
IF Fpu_Reset <> SYNC_CHAR THEN ' reset FPU and check synchronization

PRINT "uM-FPU not detected"
END

ELSE
Print_Version ' display FPU version number
PRINT

ENDIF



Micromega Corporation 2 Using uM-FPU V3.1 with ARMbasic version 7

Micromega Corporation 3 Using uM-FPU V3.1 with ARMbasic version 7

4) Replace SPIOUT calls with Fpu_Write calls
In ARMbasic V6, the SPIOUT instruction supported a variable length output list with a variety of data types. In 
ARMbasic V7, the SPIOUT library routine must be called with a string array that contains the 8-bit data bytes to 
output. To send instructions and data to the FPU, the SPIOUT function is no longer called directly by the user’s 
program. A series of Fpu_Write library functions are now called to send data to the FPU.

Example 1:
Original ARMbasic V6 Code
SPIOUT FpuCS, FpuOut, FpuClk, [SELECTA, F1_8, ATOF, "1.8", 0, FSET0]

Converted ARMbasic V7 Code
Fpu_Write3(SELECTA, F1_8, ATOF)
Fpu_WriteString("1.8")
Fpu_Write(FSET0)

Example 2:
Original ARMbasic V6 Code
SPIOUT FpuCS, FpuOut, FpuClk,

[SELECTA, DegC, LOADWORD, rawTemp>>8, rawTemp, FSET0, FDIVI, 2]

Converted ARMbasic V7 Code
Fpu_Write3(SELECTA, DegC, LOADWORD)
Fpu_WriteWord(rawTemp)
Fpu_Write3(FSET0, FDIVI, 2)

5) Print_Float, Print_FloatFormat
These have been replaced with a single Print_Float routine which takes the format as a parameter. 
Print_Float(0) is the same as the previous Print_Float call and Print_Float(format) is the same 
as the previous Print_FloatFormat call.

Original ARMbasic V6 Code
format = 51
gosub Print_FloatFormat

Converted ARMbasic V7 Code
Print_Float(51)

6) Print_Long, Print_LongFormat
These have been replaced with a single Print_Long routine which takes the format as a parameter. 
Print_Long(0) is the same as the previous Print_Long call and Print_Long(format) is the same as the 
previous Print_LongFormat call.

Original ARMbasic V6 Code
gosub Print_Long

Converted ARMbasic V7 Code
Print_Long(0)



Micromega Corporation 2 Using uM-FPU V3.1 with ARMbasic version 7

Micromega Corporation 3 Using uM-FPU V3.1 with ARMbasic version 7

Micromega Corporation 4 Using uM-FPU V3.1 with ARMbasic version 7

7) Fpu_WriteLong, Fpu_WriteFloat
In V6 these routines selected a register based on the value in the reg variable. The value in the tmp variable was 
then sent to the FPU. In V7, the register is no longer selected, it must be selected prior to calling the routine. The 
value to be sent to the FPU is passed as a parameter.

Example 1:
Original ARMbasic V6 Code
reg = -1
tmp = 500000
gosub Fpu_WriteLong

Converted ARMbasic V7 Code
Fpu_WriteLong(500000)

Example 2:
Original ARMbasic V6 Code
reg = Total
tmp = 500000
gosub Fpu_WriteLong

Converted ARMbasic V7 Code
Fpu_Write(SELECTA, Total)
Fpu_WriteLong(500000)

8) Fpu_ReadLong, Fpu_ReadFloat
In V6 these routines selected a register based on the value in the reg variable. The value was read from the FPU 
and stored in the tmp variable. In V7, the register is no longer selected, it must be selected prior to calling the 
routine. The value read from the FPU is returned from the function.

Example 1:
Original ARMbasic V6 Code
reg = -1
gosub Fpu_ReadLong

Converted ARMbasic V7 Code
tmp = Fpu_ReadLong

Example 2:
Original ARMbasic V6 Code
reg = Total
gosub Fpu_ReadLong

Converted ARMbasic V7 Code
Fpu_Write(SELECTA, Total)
tmp = Fpu_ReadLong

9) Fpu_Fcall has been removed
This function was removed in V7. It can be replaced with an Fpu_Write.

Original ARMbasic V6 Code
tmp = getLocation
gosub Fpu_Fcall

Converted ARMbasic V7 Code
Fpu_Write2(FCALL, getLocation)



Micromega Corporation 3 Using uM-FPU V3.1 with ARMbasic version 7

Micromega Corporation 4 Using uM-FPU V3.1 with ARMbasic version 7

Micromega Corporation 5 Using uM-FPU V3.1 with ARMbasic version 7

Sample Code - original ARMbasic V6 program

Main:
print
print "Demo 1"
print "------"

gosub Fpu_Reset
if status <> SYNC_CHAR then

print "uM-FPU not detected"
end

else
gosub Print_Version
print

endif

gosub Init_DS1620

SPIOUT FpuCS, FpuOut, FpuClk, [SELECTA, F1_8, ATOF, "1.8", 0, FSET0]

'-------------------- main loop -----------------------------------------------

do
gosub Read_DS1620
print "Raw Temp:   $"; HEX(rawTemp)

SPIOUT FpuCS, FpuOut, FpuClk,
[SELECTA, DegC, LOADWORD, rawTemp>>8, rawTemp, FSET0, FDIVI, 2]

SPIOUT FpuCS, FpuOut, FpuClk,
[SELECTA, DegF, FSET, DegC, FMUL, F1_8, FADDI, 32]

print "Degrees C: ";
SPIOUT FpuCS, FpuOut, FpuClk, [SELECTA, DegC]
format = 51
gosub Print_FloatFormat
print

print "Degrees F: ";
SPIOUT FpuCS, FpuOut, FpuClk, [SELECTA, DegF]
format = 51
gosub Print_FloatFormat
print

WAIT(2000)
print

loop



Micromega Corporation 4 Using uM-FPU V3.1 with ARMbasic version 7

Micromega Corporation 5 Using uM-FPU V3.1 with ARMbasic version 7

Micromega Corporation 6 Using uM-FPU V3.1 with ARMbasic version 7

 Sample Code - converted ARMbasic V7 program

#include "FPUspi.bas"

Main:
print
print "Demo 1"
print "------"

if Fpu_Reset <> SYNC_CHAR then
print "uM-FPU not detected"
end

else
Print_Version
print

endif

Init_DS1620

Fpu_Write3(SELECTA, F1_8, ATOF)
Fpu_WriteString("1.8")
Fpu_Write(FSET0)

'-------------------- main loop -----------------------------------------------

do
rawTemp = read_DS1620
print "Raw Temp:   $"; HEX(rawTemp)

Fpu_Write3(SELECTA, DegC, LOADWORD)
Fpu_WriteWord(rawTemp)
Fpu_Write3(FSET0, FDIVI, 2)

Fpu_Write4(SELECTA, DegF, FSET, DegC)
Fpu_Write4(FMUL, F1_8, FADDI, 32)

print "Degrees C: ";
Fpu_Write2(SELECTA, DegC)
Print_Float(51)
print

print "Degrees F: ";
Fpu_Write2(SELECTA, DegF)
Print_Float(51)
print

WAIT(2000)
print

loop



Micromega Corporation 5 Using uM-FPU V3.1 with ARMbasic version 7

Micromega Corporation 6 Using uM-FPU V3.1 with ARMbasic version 7

 uM-FPU V3 IDE Release 2 beta

The code generated by the current uM-FPU V3 IDE V1.3 software is for ARMbasic V6. To generate code for 
ARMbasic V7 requires using the new version uM-FPU V3 IDE Release 2.0 beta software. To use this new software, 
do the following:

1) Unzip the uMFPU-V3_1-ARMbasicV7 support software

2) Download the uM-FPU V3 IDE Release 2.0 beta software at the following link:
http://www.micromegacorp.com/ide-v3-beta.html

3) Start the  uM-FPU V3 IDE Release 2.0 beta software

4) Select the Tools/Add Target File... command, and select the file called ARMbasic V7.txt file that is 
included with the uMFPU-V3_1-ARMbasicV7 support software. This copies the file into the target 
directory for the uM-FPU V3 IDE. The ARMbasic V7 target will now be available in the Target 
menu on the input page

5) To generate code for ARMbasic V7 select ARMbasic V7 target in the Target menu on the input 
page prior to compiling the code.


